
Moses

Philipp Koehn

12 March 2015

Philipp Koehn Machine Translation: Moses 12 March 2015

1Who will do MT Research?

• If MT research requires the development of many resources

– who will be able to do relevant research?
– who will be able to deploy the technology?

• A few big labs?

• ... or a broad network of academic and commercial institutions?

Philipp Koehn Machine Translation: Moses 12 March 2015

2Moses

Open source machine translation toolkit

Everybody can build a state of the art system

Philipp Koehn Machine Translation: Moses 12 March 2015

3Moses History

2002 Pharaoh decoder, precursor to Moses (phrase-based models)

2005 Moses started by Hieu Hoang and Philipp Koehn (factored models)

2006 JHU workshop extends Moses significantly

2006-2012 Funding by EU projects EuroMatrix, EuroMatrixPlus

2009 Tree-based models implemented in Moses

2012-2015 MosesCore project. Full-time staff to maintain and enhance Moses

Philipp Koehn Machine Translation: Moses 12 March 2015

4Information

• Web site: http://www.statmt.org/moses/

• Github repository: https://github.com/moses-smt/mosesdecoder/

• Main user mailing list: moses-support@mit.edu

– 1034 subscribers (March 2015)
– several emails per day

Philipp Koehn Machine Translation: Moses 12 March 2015

5Academic Use

Philipp Koehn Machine Translation: Moses 12 March 2015

6Commercial Use

• Widely used by companies for internal use or basis for commercial MT offerings

For this Moses MT market report we idenfified 22 of the 64 MT operators as
Moses-based and we estimate the market share of these operators to be about

$45 million or about 20% of the entire MT solutions market.

(Moses MT Market Report, 2015)

Philipp Koehn Machine Translation: Moses 12 March 2015

7Quality

• Recent evaluation campaign on news translation

• Moses system better than Google Translate

– English–Czech (2014)
– French–English (2013, 2014)
– Czech–English (2013)
– Spanish–English (2013)

• Moses system as good as Google Translate

– English–German (2014)
– English–French (2013)

• Google Translate is trained on more data

• In 2013, Moses systems used very large English language model

Philipp Koehn Machine Translation: Moses 12 March 2015

8Developers

• Formally in charge: Philipp Koehn

• Keeps ship afloat: Hieu Hoang

• Mostly academics

– researcher implements a new idea
– it works→ research paper
– it is useful→merge with main branch, make user friendly, document

• Some commercial users

– more memory and time efficient implementations
– handling of specific text formats (e.g., XML markup)

Philipp Koehn Machine Translation: Moses 12 March 2015

9

build a system

Philipp Koehn Machine Translation: Moses 12 March 2015

10Ingredients

• Install the software

– runs on Linux and MacOS
– installation instructions
http://www.statmt.org/moses/?n=Development.GetStarted

• Get some data

– OPUS (various languages, various corpora)
http://opus.lingfil.uu.se/

– WMT data (focused on news, defined test sets)
http://www.statmt.org/wmt15/translation-task.html

– Microtopia , Chinese–X corpus extracted from Twitter and Sina Weibo
http://www.cs.cmu.edu/∼lingwang/microtopia/

– Asian Scientific Paper Excerpt Corpus (Japanese–English and Chinese)
http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

– LDC has large Arabic–English and Chinese–English corpora

Philipp Koehn Machine Translation: Moses 12 March 2015

11Steps

Philipp Koehn Machine Translation: Moses 12 March 2015

12Basic Text Processing

• Tokenization
The bus arrives in Baltimore .

• Handling case

– lowercasing / recasing
the bus arrives in baltimore .

– truecasing / de-truecasing
the bus arrives in Baltimore .

• Other pre-processing, such as

– compound splitting
– annotation with POS tags, word classes
– morphological analysis
– syntactic parsing

Philipp Koehn Machine Translation: Moses 12 March 2015

13Major Training Steps

• Word alignment

• Phrase table building

• Language model training

• Other component models

– reordering model
– operation sequence model

• Organize specification into configuration file

Philipp Koehn Machine Translation: Moses 12 March 2015

14Tuning and Testing

• Parameter tuning

– prepare input and reference translation
– use methods such as MERT to optimize weights
– insert weights into configuration file

• Testing

– prepare input and reference translation
– translate input with decoder
– compute metric scores (e.g., BLEU) with respect to reference

Philipp Koehn Machine Translation: Moses 12 March 2015

15

experiment.perl

Philipp Koehn Machine Translation: Moses 12 March 2015

16Experimentation

• Build baseline system

• Try out

– a newly implemented feature
– variation of configuration
– use of different training data

• Build new system

• Compare results

• Repeat

Philipp Koehn Machine Translation: Moses 12 March 2015

17Motivation

• Avoid typing many commands on command line

• Steps from previous runs could be re-used

• Important to have a record of how a system was built

• Need to communicate system setup to fellow researchers

Philipp Koehn Machine Translation: Moses 12 March 2015

18Experiment Management System

• Configuration in one file

• Automatic re-use of results of steps from prior runs

• Runs steps in parallel when possible

• Can submit steps as jobs to GridEngine clusters

• Detects step failure

• Provides web based interface with analysis

Philipp Koehn Machine Translation: Moses 12 March 2015

19Web-Based Interface

Philipp Koehn Machine Translation: Moses 12 March 2015

20Analysis

Philipp Koehn Machine Translation: Moses 12 March 2015

21Quick Start

• Create a directory for your experiment

• Copy example configuration file config.toy

• Edit paths to point to your Moses installation

• Edit paths to your training / tuning / test data

• Run experiment.perl -config config.toy

Philipp Koehn Machine Translation: Moses 12 March 2015

22Automatically Generated Execution Graph

Philipp Koehn Machine Translation: Moses 12 March 2015

23Configuration File
##

CONFIGURATION FILE FOR AN SMT EXPERIMENT

##

[GENERAL]

directory in which experiment is run

#

working-dir = /home/pkoehn/experiment

specification of the language pair

input-extension = fr

output-extension = en

pair-extension = fr-en

directories that contain tools and data

#

moses

moses-src-dir = /home/pkoehn/moses

#

moses binaries

moses-bin-dir = $moses-src-dir/bin

#

moses scripts

moses-script-dir = $moses-src-dir/scripts

#

directory where GIZA++/MGIZA programs resides

external-bin-dir = /Users/hieuhoang/workspace/bin/training-tools

#

Philipp Koehn Machine Translation: Moses 12 March 2015

24Specifiying a Parallel Corpus
[CORPUS]

long sentences are filtered out, since they slow down GIZA++

and are a less reliable source of data. set here the maximum

length of a sentence

#

max-sentence-length = 80

[CORPUS:toy]

command to run to get raw corpus files

#

get-corpus-script =

raw corpus files (untokenized, but sentence aligned)

#

raw-stem = $toy-data/nc-5k

tokenized corpus files (may contain long sentences)

#

#tokenized-stem =

if sentence filtering should be skipped,

point to the clean training data

#

#clean-stem =

if corpus preparation should be skipped,

point to the prepared training data

#

#lowercased-stem =

Philipp Koehn Machine Translation: Moses 12 March 2015

25Execution Logic

• Very similar to Makefile

– need to build final report
– ... which requires metric scores
– ... which require decoder output
– ... which require a tuned system
– ... which require a system
– ... which require training data

• Files can be specified at any point

– already have a tokenized corpus→ no need to tokenize
– already have a system→ no need to train it
– already have tuning weights→ no need to tune

• If you build your own component (e.g., word aligner)

– run it outside the EMS framework, point to result
– integrate it into the EMS

Philipp Koehn Machine Translation: Moses 12 March 2015

26Execution of Step

• For each step, commands are wrapped into a shell script

% ls steps/1/LM_toy_tokenize.1* | cat

steps/1/LM_toy_tokenize.1

steps/1/LM_toy_tokenize.1.DONE

steps/1/LM_toy_tokenize.1.INFO

steps/1/LM_toy_tokenize.1.STDERR

steps/1/LM_toy_tokenize.1.STDERR.digest

steps/1/LM_toy_tokenize.1.STDOUT

• STDERR and STDERR are recorded

• INFO contains specification information for re-use check

• DONE flags finished execution

• STDERR.digest should be empty, otherwise a failure was detected

Philipp Koehn Machine Translation: Moses 12 March 2015

27Execution Plan
• Execution plan follows structure defined in experiment.meta

get-corpus

in: get-corpus-script

out: raw-corpus

default-name: lm/txt

template: IN > OUT

tokenize

in: raw-corpus

out: tokenized-corpus

default-name: lm/tok

pass-unless: output-tokenizer

template: $output-tokenizer < IN > OUT

parallelizable: yes

• in and out link steps

• default-name specifies name of output file

• template defines how command is built (not always possible)

• pass-unless and similar indicate optional and alternative steps

Philipp Koehn Machine Translation: Moses 12 March 2015

28Example: Corpus Tokenization

• Shell script steps/1/CORPUS toy tokenize.1

#!/bin/bash

PATH=/home/pkoehn/statmt/bin:/home/pkoehn/edinburgh-scripts/scripts:/home/pkoehn/edinburgh-scripts

/scripts:/usr/lib64/mpi/gcc/openmpi/bin:/home/pkoehn/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11

:/usr/X11R6/bin:/usr/games

cd /home/pkoehn/experiment/toy

echo ’starting at ’‘date‘’ on ’‘hostname‘

mkdir -p /home/pkoehn/experiment/toy/corpus

mkdir -p /home/pkoehn/experiment/toy/corpus

/home/pkoehn/moses/scripts/tokenizer/tokenizer.perl -a -l fr -r 1 -o /home/pkoehn/experiment/toy/

corpus/toy.tok.1.fr < /home/pkoehn/moses/scripts/ems/example/data/nc-5k.fr > /home/pkoehn/

experiment/toy/corpus/toy.tok.1.fr

/home/pkoehn/moses/scripts/tokenizer/tokenizer.perl -a -l en < /home/pkoehn/moses/scripts/ems/

example/data/nc-5k.en > /home/pkoehn/experiment/toy/corpus/toy.tok.1.en

echo ’finished at ’‘date‘

touch /home/pkoehn/experiment/toy/steps/1/CORPUS_toy_tokenize.1.DONE

Philipp Koehn Machine Translation: Moses 12 March 2015

29

decoder code

Philipp Koehn Machine Translation: Moses 12 March 2015

30moses.ini
MOSES CONFIG FILE

[mapping]

0 T 0

[distortion-limit]

6

feature functions

[feature]

UnknownWordPenalty

WordPenalty

PhrasePenalty

PhraseDictionaryMemory name=TranslationModel0 num-features=4 path=/home/pkoehn/experiment/toy/model/phrase-table.98

input-factor=0 output-factor=0

LexicalReordering name=LexicalReordering0 num-features=6 type=wbe-msd-bidirectional-fe-allff input-factor=0 output-factor=0

path=/home/pkoehn/experiment/toy/model/reordering-table.98.wbe-msd-bidirectional-fe.gz

Distortion

KENLM lazyken=0 name=LM0 factor=0 path=/home/pkoehn/experiment/toy/lm/toy.binlm.98 order=5

core weights

[weight]

LexicalReordering0= 0.0664129332614665 0.0193333634837915 0.0911160439237806 0.0528731533153271

0.0538468648342602 0.0425200543795641

Distortion0= 0.0734134000992988

LM0= 0.126823453992007

WordPenalty0= -0.133801307986189

PhrasePenalty0= 0.101888283655511

TranslationModel0= 0.025090988893016 0.0854194608356669 0.0892763717037456 0.0381843196363756

UnknownWordPenalty0= 1

Philipp Koehn Machine Translation: Moses 12 March 2015

31Handling Settings

• Parameters from the moses.ini file are stored in object Parameter

function Parameter::LoadParam (line 422+ of Parameter.cpp) reads in the file

• Global object StaticDatamaintains all global settings

• In function StaticData::∼StaticData() (line 95+ of StaticData.cpp),
these settings are defined, partially based on parameters in the moses.ini file

• Parameter may be read

params = m parameter->GetParam("stack-diversity");

followed by some logic what this means

• Settings may be directly set based on parameter (with default value)

m parameter->SetParameter(m maxDistortion, "distortion-limit", -1);

Philipp Koehn Machine Translation: Moses 12 March 2015

32Startup

• ExportInterface.cpp contains essentially the main function

• decoder main (lines 222+)
– loads configuration file params.LoadParam(argc,argv) (line 245)
– sets global settings

StaticData::LoadDataStatic(¶ms, argv[0]) (line 250)
– checks if decoder should be run as server process or in batch mode
if (params.GetParam("server")) (line 260)

• Typically, the decoder is used in batch mode: batch run() (lines 121+)
– initialize input / output files
IOWrapper* ioWrapper = new IOWrapper(); (line 132)

– main loop through input sentences
while(ioWrapper->ReadInput(staticData.GetInputType(), source)) (line 152)

– set up task of translating one sentence
TranslationTask* task = new TranslationTask(source, *ioWrapper); (line 272)

– execute task (may be done via threads)

Philipp Koehn Machine Translation: Moses 12 March 2015

33Translation Task

• Class TranslationTask handles one input sentence
based on the the search algorithm staticData.GetSearchAlgorithm()

• Sets implementation of the search, e.g.,

– phrase-based: manager = new Manager(*m source); (line 66)
– generic syntax-based: manager = new ChartManager(*m source); (line 95)

• Executes search algorithm

manager->Decode(); (line 101)

• Deals with output, such as

– best translation
– n-best list
– search graph

Philipp Koehn Machine Translation: Moses 12 March 2015

34Manager

• Class Manager handles phrase-based model search

• Core function Manager::Decode() (line 88+)

– collects translation options for this sentence

m transOptColl->CreateTranslationOptions(); (line 110)

how this works depends on the implementation of the phrase table
– calls search

m search->Decode(); (line 123)

• Also implements

– generation of n-best list
– various operations on the search graph (e.g., MBR decoding)
– computations of various reporting statistics

Philipp Koehn Machine Translation: Moses 12 March 2015

35Search

• Default search implemented in class SearchNormal (others, e.g., cube pruning)

• Main search loop in SearchNormal::Decode() (line 52+)

– create initial hypothesis (line 58)
Hypothesis *hypo = Hypothesis::Create(m manager,m source, m initialTransOpt);

– add to stack 0
m hypoStackColl[0]->AddPrune(hypo); (line 59)

– loop through the stacks
for (iterStack = m hypoStackColl.begin() ; iterStack != m hypoStackColl.end() ;

++iterStack) (line 63)
∗ prune stack (line 78)
sourceHypoColl.PruneToSize(staticData.GetMaxHypoStackSize());

∗ loop through hypotheses (line 87)
for (iterH = sourceHypoColl.begin(); iterH != sourceHypoColl.end(); ++iterH)

· process each hypothesis
Hypothesis &hypothesis = **iterHypo; (line 88)
ProcessOneHypothesis(hypothesis); (line 89)

Philipp Koehn Machine Translation: Moses 12 March 2015

36Expanding One Hypothesis

• Function ProcessOneHypothesis (line 109+ of SearchNormal.cpp)

• Check which translation options can be applied
– overlap with already translated
– reordering restrictions

• For valid span, execute ExpandAllHypotheses(hypothesis, startPos, endPos);

• Function ExpandAllHypotheses (line 247++ of SearchNormal.cpp)

– find translation options
const TranslationOptionList* tol = m transOptColl.GetTranslationOptionList(startPos, endPos);

– loop through them
for (iter = tol->begin() ; iter != tol->end() ; ++iter)

ExpandHypothesis(hypothesis, **iter, expectedScore);

Philipp Koehn Machine Translation: Moses 12 March 2015

37Expanding One Hypothesis (cnt.)

• Function SearchNormal::ExpandHypothesis (line 283++)

– create new hypothesis (line 294)

newHypo = hypothesis.CreateNext(transOpt);

– how many words did it translate so far? (line 351)

size t wordsTranslated = newHypo->GetWordsBitmap().GetNumWordsCovered();

– add to the right stack (line 355)

m hypoStackColl[wordsTranslated]->AddPrune(newHypo);

Philipp Koehn Machine Translation: Moses 12 March 2015

38Create New Hypothesis

• Hypothesis class Hypothesis

• Expanding existing hypothesis→ initializer Hypothesis::Hypothesis (line 82+)

– back pointer to previous hypothesis
m prevHypo(&prevHypo) (line 84)

– notes which translation option was used
m transOpt(transOpt) (line 96)

– adds translation option scores (line 100)
m currScoreBreakdown.PlusEquals(transOpt.GetScoreBreakdown());

– notes which words have been translated
m sourceCompleted(prevHypo.m sourceCompleted) (line 85)
m sourceCompleted.SetValue(m currSourceWordsRange.GetStartPos(),

m currSourceWordsRange.GetEndPos(), true); (line 107)

– ... and other book keeping

Philipp Koehn Machine Translation: Moses 12 March 2015

39Feature Functions

• All hypothesis are scores with feature functions

• Each is implemented with its own class (see directory FF)

• Scoring

– if only depend on the translation option
→ need to implement function EvaluateInIsolation

– if additionally depends on input sentence
→ need to implement function EvaluateWithSourceContext

– if depends on application context
→ need to implement function EvaluateWhenApplied

• If stateful, EvaluateWhenApplied returns feature state

• YouTube video:
https://www.youtube.com/watch?v=x-uo522bplw

Philipp Koehn Machine Translation: Moses 12 March 2015

