
Introduction to Neural Networks

Philipp Koehn

14 April 2015

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

1Linear Models

• We used before weighted linear combination of feature values hj and weights λj

score(λ,di) =
∑
j

λj hj(di)

• Such models can be illustrated as a ”network”

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

2Limits of Linearity

• We can give each feature a weight

• But not more complex value relationships, e.g,

– any value in the range [0;5] is equally good

– values over 8 are bad

– higher than 10 is not worse

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

3XOR

• Linear models cannot model XOR

bad good

good bad

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

4Multiple Layers

• Add an intermediate (”hidden”) layer of processing
(each arrow is a weight)

• Have we gained anything so far?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

5Non-Linearity

• Instead of computing a linear combination

score(λ,di) =
∑
j

λj hj(di)

• Add a non-linear function

score(λ,di) = f
(∑

j

λj hj(di)
)

• Popular choices
tanh(x) sigmoid(x) = 1

1+e−x

(sigmoid is also called the ”logistic function”)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

6Deep Learning

• More layers = deep learning

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

7

example

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

8Simple Neural Network

11

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• One innovation: bias units (no inputs, always value 1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

9Sample Input

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Try out two input values

• Hidden unit computation

sigmoid(1.0× 3.7 + 0.0× 3.7 + 1×−1.5) = sigmoid(2.2) =
1

1 + e−2.2
= 0.90

sigmoid(1.0× 2.9 + 0.0× 2.9 + 1×−4.5) = sigmoid(−1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

10Computed Hidden

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Try out two input values

• Hidden unit computation

sigmoid(1.0× 3.7 + 0.0× 3.7 + 1×−1.5) = sigmoid(2.2) =
1

1 + e−2.2
= 0.90

sigmoid(1.0× 2.9 + 0.0× 2.9 + 1×−4.5) = sigmoid(−1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

11Compute Output

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit computation

sigmoid(.90× 4.5 + .17×−5.2 + 1×−2.0) = sigmoid(1.17) =
1

1 + e−1.17
= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

12Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit computation

sigmoid(.90× 4.5 + .17×−5.2 + 1×−2.0) = sigmoid(1.17) =
1

1 + e−1.17
= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

13

why ”neural” networks?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

14Neuron in the Brain

• The human brain is made up of about 100 billion neurons

Soma

Axon
Nucleus

Dendrite
Axon terminal

• Neurons receive electric signals at the dendrites and send them to the axon

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

15Neural Communication

• The axon of the neuron is connected to the dendrites of many other neurons

Neurotransmitter

Neurotransmitter
transporter Axon

terminal

Synaptic cleft

Dendrite

ReceptorPostsynaptic
density

Voltage
gated Ca++

channel

Synaptic
vesicle

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

16The Brain vs. Artificial Neural Networks

• Similarities

– Neurons, connections between neurons
– Learning = change of connections, not change of neurons
– Massive parallel processing

• But artificial neural networks are much simpler

– computation within neuron vastly simplified
– discrete time steps
– typically some form of supervised learning with massive number of stimuli

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

17

back-propagation training

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

18Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

⇒ How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

19Key Concepts

• Gradient descent

– error is a function of the weights
– we want to reduce the error
– gradient descent: move towards the error minimum
– compute gradient→ get direction to the error minimum
– adjust weights towards direction of lower error

• Back-propagation

– first adjust last set of weights
– propagate error back to each previous layer
– adjust their weights

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

20Derivative of Sigmoid
• Sigmoid sigmoid(x) =

1

1 + e−x

• Reminder: quotient rule(f(x)

g(x)

)′
=

g(x)f ′(x)− f(x)g′(x)

g(x)2

• Derivative d sigmoid(x)
dx

=
d

dx

1

1 + e−x

=
0× (1− e−x)− (−e−x)

(1 + e−x)2

=
1

1 + e−x

(e−x

1 + e−x

)
=

1

1 + e−x

(
1−

1

1 + e−x

)
= sigmoid(x)(1− sigmoid(x))

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

21Final Layer Update

• Linear combination of weights s =
∑

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t− y)2

• Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

22Final Layer Update (1)

• Linear combination of weights s =
∑

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t− y)2

• Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t− y)2 = −(t− y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

23Final Layer Update (2)

• Linear combination of weights s =
∑

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t− y)2

• Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=
d sigmoid(s)

ds
= sigmoid(s)(1− sigmoid(s)) = y(1− y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

24Final Layer Update (3)

• Linear combination of weights s =
∑

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t− y)2

• Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

• x is weighted linear combination of hidden node values hk

ds

dwk
=

d

dwk

∑
k

wkhk = hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

25Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=
dE

dy

dy

ds

ds

dwk

= −(t− y) y(1− y) hk

– error
– derivative of sigmoid: y′

• Weight adjustment will be scaled by a fixed learning rate µ

∆wk = µ (t− y) y′ hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

26Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
∑
j

1

2
(tj − yj)2

• Weights k → j are adjusted according to the node they point to

∆wj←k = µ(tj − yj) y′j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

27Hidden Layer Update

• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

δj = (tj − yj) y′j

• Back-propagate the error term
(why this way? there is math to back it up...)

δi =
(∑

j

wj←iδj

)
y′i

• Universal update formula
∆wj←k = µ δj hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

28Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– δG = (t− y) y′ = (1− .76) 0.181 = .0434

– ∆wGD = µ δG hD = 10× .0434× .90 = .391

– ∆wGE = µ δG hE = 10× .0434× .17 = .074

– ∆wGF = µ δG hF = 10× .0434× 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

29Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– δG = (t− y) y′ = (1− .76) 0.181 = .0434

– ∆wGD = µ δG hD = 10× .0434× .90 = .391

– ∆wGE = µ δG hE = 10× .0434× .17 = .074

– ∆wGF = µ δG hF = 10× .0434× 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

30Hidden Layer Updates

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Hidden node D

– δD =
(∑

j wj←iδj

)
y′D = wGD δG y

′
D = 4.5× .0434× .0898 = .0175

– ∆wDA = µ δD hA = 10× .0175× 1.0 = .175
– ∆wDB = µ δD hB = 10× .0175× 0.0 = 0
– ∆wDC = µ δD hC = 10× .0175× 1 = .175

• Hidden node E

– δE =
(∑

j wj←iδj

)
y′E = wGE δG y

′
E = −5.2× .0434× 0.2055 = −.0464

– ∆wEA = µ δE hA = 10×−.0464× 1.0 = −.464
– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

31

some additional aspects

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

32Initialization of Weights

• Weights are initialized randomly
e.g., uniformly from interval [−0.01, 0.01]

• Glorot and Bengio (2010) suggest

– for shallow neural networks [
− 1√

n
,

1√
n

]
n is the size of the previous layer

– for deep neural networks[
−

√
6

√
nj + nj+1

,
sqrt6

√
nj + nj+1

]
nj is the size of the previous layer, nj size of next layer

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

33Neural Networks for Classification

• Predict class: one output node per class

• Training data output: ”One-hot vector”, e.g., ~y = (0, 0, 1)T

• Prediction
– predicted class is output node yi with highest value
– obtain posterior probability distribution by soft-max

softmax(yi) =
eyi∑
j e

yj

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

34Speedup: Momentum Term

• Updates may move a weight slowly in one direction

• To speed this up, we can keep a memory of prior updates

∆wj←k(n− 1)

• ... and add these to any new updates (with decay factor ρ)

∆wj←k(n) = µ δj hk + ρ∆wj←k(n− 1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

35

computational aspects

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

36Vector and Matrix Multiplications

• Forward computation: ~s = W~h

• Activation function: ~y = sigmoid(~h)

• Error term: ~δ = (~t− ~y) sigmoid’(~s)

• Propagation of error term: ~δi = W~δi+1 · sigmoid’(~s)

• Weight updates: ∆W = µ~δ~hT

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

37GPU

• Neural network layers may have, say, 200 nodes

• Computations such as W~h require 200× 200 = 40, 000 multiplications

• Graphics Processing Units (GPU) are designed for such computations

– image rendering requires such vector and matrix operations
– massively mulit-core but lean processing units
– example: NVIDIA Tesla K20c GPU provides 2496 thread processors

• Extensions to C to support programming of GPUs, such as CUDA

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

38Theano

• GPU library for Python

• Homepage: http://deeplearning.net/software/theano/

• See web site for sample implementation of back-propagation training

• Used to implement

– neural network language models
– neural machine translation (Bahdanau et al., 2015)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

