Introduction to Neural Networks

Philipp Koehn

14 April 2015

—N
SN

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Linear Models 1

e We used before weighted linear combination of feature values % ; and weights);

score(A, d;) Z)\ hj(

e Such models can be illustrated as a "network”

QO

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Limits of Linearity 2

Q

e We can give each feature a weight

e But not more complex value relationships, e.g,

— any value in the range [0;5] is equally good
— values over 8 are bad

— higher than 10 is not worse

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

XOR 3

<

e Linear models cannot model XOR

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

[

Multiple Layers 1

P
V;
‘

e Add an intermediate (“hidden”) layer of processing
(each arrow is a weight)

;
(

7
?{4
9
A

\
g

(/

n
o

\\
%%

)
)

"

e Have we gained anything so far?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Q

Non-Linearity 5

e Instead of computing a linear combination

score(\, d;) Z)\ hj(

e Add a non-linear function

score(A, d;) Z Aj by
e Popular choices
tanh(x) sigmoid(x) = 5 +i_x
A

. -
/ >

(sigmoid is also called the “logistic function”)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

[

Deep Learning 6

P
V;
‘

e More layers = deep learning

RIS
\\“?«'i'/ \\“?«Y‘t’/

2.V R/

S RS
2R

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

example

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Simple Neural Network 8

e One innovation: bias units (no inputs, always value 1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Sample Input 0

e Try out two input values

e Hidden unit computation

1
sigmoid (1.0 x 3.7+ 0.0 x 3.7+ 1 x —1.5) = sigmoid(2.2) = o 2z= 0.90

sigmoid(1.0 x 2.9+ 0.0 x 2.9+ 1 x —4.5) = sigmoid(—1.6) = = 0.17

1 + 61'6

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Computed Hidden 10

e Try out two input values

e Hidden unit computation

1
sigmoid (1.0 x 3.7+ 0.0 x 3.7+ 1 x —1.5) = sigmoid(2.2) = o 2z= 0.90

sigmoid(1.0 x 2.9+ 0.0 x 2.9+ 1 x —4.5) = sigmoid(—1.6) = = 0.17

1 + 61'6

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Compute Output 11

e Output unit computation

1
sigmoid(.90 x 4.5+ .17 x —=5.2 +1 x —2.0) = sigmoid(1.17) = — = 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Computed Output 12

e Output unit computation

1
sigmoid(.90 x 4.5+ .17 x —=5.2 +1 x —2.0) = sigmoid(1.17) = — = 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

o QY

why “neural” networks?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Neuron in the Brain 14

e The human brain is made up of about 100 billion neurons

Dendrite

Axon terminal

’ Soma I

QQO‘?

Axon

Nucleus

e Neurons receive electric signals at the dendrites and send them to the axon

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Neural Communication 15

e The axon of the neuron is connected to the dendrites of many other neurons

Neurotransmitter
Synaptic
vesicle

Neurotransmitter
transporter

Axon
terminal
Voltage
gated Ca++

channel

Postsynaptic Receptor

density

} Synaptic cleft

Dendrite

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

The Brain vs. Artificial Neural Networks

e Similarities

— Neurons, connections between neurons
— Learning = change of connections, not change of neurons
— Massive parallel processing

e But artificial neural networks are much simpler

— computation within neuron vastly simplified
— discrete time steps
— typically some form of supervised learning with massive number of stimuli

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

17

back-propagation training

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Error 18

e Computed output: y =.76

e Correct output: ¢ =1.0

= How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Key Concepts 19

e Gradient descent

— error is a function of the weights

— we want to reduce the error

— gradient descent: move towards the error minimum

— compute gradient — get direction to the error minimum
— adjust weights towards direction of lower error

e Back-propagation

— first adjust last set of weights
— propagate error back to each previous layer
— adjust their weights

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Derivative of Sigmoid 20

1
1 +e 2

° Sjgmoid sigmoid(x) =

e Reminder: quotient rule
(f(w))’ _9(@)f'(x) = f(z)g ()
g(x) g(x)?

)) I i d 1
e Derivative d sigmoid(z) _

dx Cdx 1 + e 7
_Ox(1—=e") = (—e™)
a (14 e—%)2

— X

1
- 1—|—e—$(1j—e—“f)
1
1—|—e_f’3(1_ 1+e‘$>

= sigmoid(x)(1 — sigmoid(x))

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Final Layer Update 21

e Linear combination of weights s =), wihy

e Activation function y = sigmoid(s)

e Error (L2 norm) F = (¢t — y)?

e Derivative of error with regard to one weight wy,

dbl dEdy ds
dw, dy ds dwy,

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Final Layer Update (1) 22
e Linear combination of weights s =) |, wihy
e Activation function y = sigmoid(s)
e Error (L2 norm) £ = (¢ — y)?

e Derivative of error with regard to one weight wy,

dE dEdy ds
dw, dy dsdwy

e Error I is defined with respect to y

dE; d 1

i = d St—y)°=—(t—y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Final Layer Update (2) 23
e Linear combination of weights s = >, wihy
e Activation function y = sigmoid(s)
e Error (L2norm) F = (¢t — y)?

e Derivative of error with regard to one weight wy,

dEl dEdy ds
dw,, dy dsdw

e y with respect to z is sigmoid(s)

dy dsigmoid(s)
ds ds

— sigmoid(s)(l — sigmoid(s)) = y(l - y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Final Layer Update (3) 24
e Linear combination of weights s =) |, wihy,
e Activation function y = sigmoid(s)
e Error (L2norm) E = (¢ — y)?

e Derivative of error with regard to one weight wy,

db dEdy ds
dw, dy dsdw;

e 1 is weighted linear combination of hidden node values 7,

ds d
— he = h
dwk dwk ; it g

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Putting it All Together 25

e Derivative of error with regard to one weight w;,

d_E _ dEdy ds
dw, dy dsdwy,

=—(t—y) yll—y) h

— error
— derivative of sigmoid: y’

o Weight adjustment will be scaled by a fixed learning rate .

Awp = p (t—y) ¥ hi

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Multiple Output Nodes 26

e Our example only had one output node
o Typically neural networks have multiple output nodes

e Error is computed over all j output nodes
1 2
E=) 5L = 5)
J

e Weights & — j are adjusted according to the node they point to

Aw;je i = p(t; — yj) v5 h

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

. =X
Hidden Layer Update 2 QY
e In a hidden layer, we do not have a target output value

e But we can compute how much each node contributed to downstream error

e Definition of error term of each node

0j = (tj — y;) v

e Back-propagate the error term
(why this way? there is math to back it up...)

0; = <ij<—z'5j) Yi
J

e Universal update formula
ij<—k — K 5]' hy

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Our Example 28

o Computed output: y = .76
e Correct output: ¢ =1.0

e Final layer weight updates (learning rate ;1 = 10)
— o= (t—y)y = (1—.76) 0.181 = .0434
— Awap = 11 0g hp = 10 x .0434 x .90 = .391
— Awgg = 1 0g he = 10 x .0434 x .17 = .074
— Awgr = p 0g hg =10 x .0434 x 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Our Example 29

o Computed output: y =.76
o Correct output: ¢ =1.0

e Final layer weight updates (learning rate ;1 = 10)
—Se=(t—y)y = (1—.76)0.181 = .0434
— Awep = 11 dg hp = 10 x .0434 x .90 = .391
— Awge = 66 he = 10 x .0434 x .17 = .074
— Awgr = p 0g hg = 10 x .0434 x 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Hidden Layer Updates 30

e Hidden node D

- (zj ij-(sj) yl = wep Ja Yl = 4.5 x 0434 x .0898 = .0175
— Awpa = it 0p ha =10 x .0175 x 1.0 = .175

— Awpg = 1 dp hg =10 x .0175 x 0.0 =0

— Awpe = 11 0p he = 10 X .0175 x 1 = 175

e Hidden node E
— b = (Zj ij(Sj) Yl = wae da Yl = —5.2 % 0434 x 0.2055 = —.0464

— Awga = 4 0g hp = 10 x —.0464 x 1.0 = —.464
— etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

QP

some additional aspects

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Initialization of Weights 32

e Weights are initialized randomly
e.g., uniformly from interval [—0.01, 0.01]

e Glorot and Bengio (2010) suggest

— for shallow neural networks
1

- = —

n

4

n is the size of the previous layer

— for deep neural networks

[B V6 sqrto

VG T /Ty

n; is the size of the previous layer, n; size of next layer

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Neural Networks for Classification 33

O
- O

e Predict class: one output node per class
e Training data output: “One-hot vector”, e.g., v = (0,0, 1)

e Prediction

— predicted class is output node y; with highest value
— obtain posterior probability distribution by soft-max

eyi
> j e

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

softmax(y;) =

Speedup: Momentum Term 34

e Updates may move a weight slowly in one direction

e To speed this up, we can keep a memory of prior updates

ijq_k(n — 1)

e ... and add these to any new updates (with decay factor p)

Awjp(n) =wd; hy + pAwjr(n —1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

35

computational aspects

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Vector and Matrix Multiplications 36

e Forward computation: § = Wh

e Activation function: i = sigmoid(ﬁ)

e Error term: § = ({ — 7)) sigmoid’(5)

e Propagation of error term: §; = W, - sigmoid’(5)

e Weight updates: AW = poh7”

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

GPU o

e Neural network layers may have, say, 200 nodes

e Computations such as W5 require 200 x 200 = 40, 000 multiplications

e Graphics Processing Units (GPU) are designed for such computations

— image rendering requires such vector and matrix operations

— massively mulit-core but lean processing units
— example: NVIDIA Tesla K20c GPU provides 2496 thread processors

e Extensions to C to support programming of GPUs, such as CUDA

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

Theano 38

e GPU library for Python
e Homepage: http://deeplearning.net/software/theano/
e See web site for sample implementation of back-propagation training

e Used to implement

— neural network language models
— neural machine translation (Bahdanau et al., 2015)

Philipp Koehn Machine Translation: Introduction to Neural Networks 14 April 2015

